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The vorticity formed in the cross section of a turbulent flow in a straight circular pipe rotating 
about its longitudinal azis decreases the values of the turbulent stresses, turbulence energy, and 
dissipation rate along the pipe. The results of laboratory ezperiments and calculations by the 
second-order closure model of turbulent transfer are presented. On the whole, the model using 
a system of transport equations yields better agreement with ezperimental data than the models 
with algebraic relations for second-order moments. 

In t roduc t ion .  The action of mass forces in a swirling flow (centrifugal and Coriolis accelerations), 
which is similar to the action of the acceleration of gravity in a stratified flow [1, 2], weakens momentum and 
heat-transfer processes. The vorticity formed in the cross section of a turbulent flow in a straight circular 
pipe rotating about its longitudinal axis suppresses turbulent fluctuations and radial turbulent transfer at 
small and moderate velocities of pipe rotation: the turbulent stress, the turbulence energy, and its dissipation 
decrease. 

Onufriev and Khristianovich [3, 4] considered the influence of the swirling flow on its statistical 
characteristics on the basis of semi-empirical equations that describe the behavior of the mean velocity fields 
and the second-order moments in the local-equilibrium approximation. 

We present the data of laboratory measurements of the first- and second-order moments of the velocity 
field for a flow of an incompressible liquid in a motionless and rotating pipe. These data are compared with 
the calculation results obtained using three models of turbulent transfer. These models include differential 
transport equations for the components of the Reynolds stress tensor, algebraic relationships for normal 
turbulent stresses in the nonequilibrium approximation, and algebraic relationships for turbulent stresses in 
the local-equilibrium approximation, respectively. 

The experimental hot-wire anemometry results were obtained at the Moscow Physicotechnical Institute, 
and the calculations were performed at the Institute of Theoretical and Applied Mechanics of the Siberian 
Division of the Russian Academy of Sciences and Novosibirsk State University. 

Exper imenta l  S t u d y  of the  Turbulent  Flow Character is t ics  in a Ro ta t ing  Pipe.  The 
experiments were performed on a setup whose main units were the straight section of a channel whose 
length was equal to 100 diameters and which formed a developed turbulent flow and the rotating section, 
which was 25 diameters long (the channel diameter was 0.06 m). The air was injected into the channel from 
a high-pressure pipeline through a reductor and a flow governor, which ensured a constant flow rate. The 
temperature of the air injected into the channel was maintained constant and equal to room temperature 
by means of an automatically adjusted heater. After the heater, the air entered a receiver wherein it passed 
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through several layers of nylon cloth and the equalizing metal grids. The receiver was connected to the flow- 
forming section by a nozzle with contraction 12 : 1. A turbulizer was placed between the nozzle and the channel 
entrance. The regime of developed turbulent flow for a given Reynolds number was achieved at the end of 
the motionless section of the pipe. The flow with these characteristics entered the test section of the channel, 
which could rotate about the centerline. The rotated section was driven by an asynchronous engine with 
frequency control of the rotation velocity within the range 0 to 70 revolutions per second. The flow velocity 
Uo at the channel axis varied from 0 to 70 m/see. The swirling level can be characterized by the parameter 
SP = Wo/Uo = w R / U o ,  where w is the angular velocity of pipe rotation. The measurement results presented 
below were obtained for U0 = 10 m/sec and ReD = Uo2R/v  = 4 �9 104 (v is the kinematic viscosity of the air 
and R is the pipe radius). 

The turbulent flow characteristics were measured by DISA hot-wire equipment; 55Pll  single-wire, 
55P61 double-wire, and 55P91 triple-wire probes were used. The signals were registered by analog devices and 
processed on a dedicated "PLURIMAT-S" mini-computer with temporal recording of the signals. The setup 
and the measurement technique are described in more detail in [5-8]. The longitudinal and circumferential 
components of the mean velocity, the components of the Reynolds stress tensor, some third-order moments, 
and the energy dissipation rate were measured based on the dependence for the longitudinal one-dimensional 
spectrum. 

Mode l  of  t h e  T r a n s p o r t  Equa t ions  for T u r b u l e n t  Stress.  We use three turbulent transfer models 
of different complexity to describe the behavior of the first- and second-order moments of the velocity field of 
a turbulent flow in a round pipe rotating about its axis. The goal is to clarify the accuracy of these models. 

Model No. 1 includes the differential equations of turbulent transfer for the mean velocity vector 
and turbulent stress tensor [9-11]. Simplified variants of this complete model are obtained if the differential 
equations for the sought second-order moments are somehow reduced to algebraic relationships. Model No. 2 of 
turbulent transfer was developed [9, 12] by simplifying the equations for the Reynolds stress-tensor components 
in the local-equilibrium approximation for tangential stresses and in the nonequilibrium approximation for 
normal stresses. Model No. 3 contains the relationships determined from the transport equations for the 
second-order moments in the local-balance approximation for all the components of the turbulent stress 
tensor [13, 14]. Model Nos. 1-3 also include the differential transport equations for the kinetic turbulence 
energy E = (u iu i ) /2  and its dissipation rate e. We note that the "standard ~ E-e  model of turbulence with 

the isotropic coefficient of turbulent viscosity is not capable of reproducing [9] the necessary anisotropy of the 
stress-tensor components (uiuj)  without an additional modification of a speculative character. 

Model Nos. 1-3 are formulated based on the model of second-order moments that was developed in 
[10, 11]. The suppression of the turbulent fluctuating characteristics as the flow swirling increases was taken 
into account by introducing an extra term with the Richardson swirling number into the equation for e [9, 15, 
16]. The damping effect of the wall on the transverse velocity fluctuations was described using the correction 
[12, 13] of the standard model for the pressure-velocity shear correlation in the equations which determine 
the second-order moments. To take into account the wall effects, the destruction terms in the equations for 
(uiuj) and e were also modified in model Nos. 1-3 [14]. As the calculation results show, the three models 
adequately describe both the effect of the flow swirling on the turbulent momentum transfer and the effect 
of the solid wall. The difference between the models is, however, manifested in the accuracy of the numerical 
results obtained when the latter are compared with experimental data. 

�9 Governing Equat ions  o f  the Model. To describe the flow in a rotating pipe, we use a cylindrical 
coordinate system x i = (x,  r, ~o), where z is counted off along the pipe axis, r in the radial direction, and 
~0 in the azimuthal direction. The tensor notation is used for an arbitrary curvilinear system of coordinates. 
In the cylindrical coordinates, the components of the mean and fluctuating velocity have the following form: 
Ui = (U, V, r W ) ,  U i = (U, V, W / r ) ,  ui = (u, v, rw) ,  and u i = (u, v, w /r ) .  The system of exact (unclosed) 
transport equations for the mean ;,'elocity vector and the turbulent stress tensor for a steady incompressible 
flow is written in the general tensor notation: 

u uiu ,j  'FkU ,jk P,d:; (1) 
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Uk(uiui) ,k  = v(gkm(uiu.i),k),m + Di.i + Pit + IIij - eli, (2) 

where Dij = - ( u i u j u m ) , m  - ((pui),j  + (puj) , i ) /p  (turbulent transfer), Pij = - ( u j u t ) U i , k  - (uiuk)Uj,k 
(the production of turbulence), IIii = (p(ui,j + uj, i)}/p (the pressure-velocity shear correlation), ~ij = 
2vgkm(Ui,mUj),l (the dissipation), the subscript ",i" denotes the covariant differentiation with respect to 
the coordinate x i, gii is the metric tensor, (--"/ denotes the averaging in t ime, /5  is the mean pressure, p is 
the pressure fluctuation, p is the density, and v is the kinematic viscosity. 

To obtain the closed form of system (1) and (2), we need model representations for the terms Dij, 
[Iij, and eii. The simplest model expression of gradient type for turbulent diffusion (third-order moments) 
processes is [17] 

- ( , ~ , j ~ , " )  = -gk"(~,i, , j~k) = gk"O,  E(~k~")(~uj),~, (3) 

where Cs = 0.18 is an empirical coefficient. Along with the turbulence production P --- - - (1/2)((uiuk)Uik + 

(uiuk)Ui,k), the dissipation e enters the equation for turbulence energy derived from (2) and (3): 

UkE,  k = k,n a)Ek + Cs E(u j ,  u a ) E , ,  + P - e - - - .  (4) 
' ,T 2 

The last term in (4) appears in correcting the standard model relationship for eli = (2/3)5ile, which takes 
into account the effect of low Reynolds numbers [14] near the wall: 

2 (uiuj)  
e i i =  -~ gije + 2v x2 (5) 

(x,  is the distance from the wall). 
The pressure-velocity shear correlation is simulated [11] as a sum of three terms: 

= 0!}) + + + 

The first term describes the tendency of turbulence to isotropy in the absence of the mean velocity shear and 
the wall effects: 

n!}) - c ,  ~ ( (~ ,~)  ; (7) = " - ~ . , ,E )  

the second one describes the contribution of the mean-velocity gradients: 

- 5 g~iP); (8) 

and the third term describes the wall effect [13]: 

'0) e [  3 ] n~j = c~ ~ (u~)gij - ~((u.~j)gi.  + (~ .~/gj . )  ; (9) 

, (2) 3 (n(.~)~,n + n2 )g . ) ] ,  (10) 

where the damping function is f = (1 /5 )ES/2 / (exn)  [12] (the subscript n denotes the normal direction to the 
wall). 

The value of e in the model relationships is determined from the differential transport  equation 

e 2re 

fl  = e x p ( - 0 . b x , u . / v ) ;  Ce = 0.18; C~1 = 1.35; Ce2 = 1.8; 

C~'2 = max [1.4; Ce2/2(1 - C~3Pdw)]; f2 = 1 - (2/9) exp [ - (E2/ (6ve) )2];  

Here 
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The Richardson swirling number Riw (11) is introduced to describe the influence of the streamline curvature 
similarly to the influence of the medium's stratification on the turbulent transfer [15]. The correction for the 
streamline curvature is included in the destruction term in (11) according to [16]. The expression for Riw 
is taken in a more general form than in [16] by analogy with the Richardson number in stratified turbulent 
flows [9, 13]. The correction of destruction in Eq. (11) is based on the hypothesis that the stabilizing effect 
of swirling can be simulated by decreasing the length scale of turbulent vortices L = E3/2/e for Riw > 0 
(i.e., owing to an increase in the dissipation e leading to the suppression of the turbulence energy E). The 
coefficient C;2 is limited from below (6';2 /> 1.4) so that the dissipation e does not become "too large" on 
account of the excessive decrease in the coefficient Ce2f2(1 - C~3RJw) with an increase in Riw as the swirling 
parameter increases (SP > 0.6). 

�9 Model No. i for an Axisymmetrlc Flow in a Pipe. The model representations formulated above lead 
to a closed system of turbulent transport equations for the first- and second-order moments. For a steady 
axisymmetric flow in a pipe, the governing equations of the model in the cylindrical coordinate system have 
the form 

OU 1 0 
0~ + -r (rV) = 0; (12) 

10[(0  )] 
ox  + o~ = -; o-7 ~ . -b-7-(u , , /  - ~ ? , , ;  

- ~ 7 +  v - ~ V  + ~ = - - - ~  o~ ~ ~ -  ("") -~'---~2 r " (14) 

g-~x+V~r =r~r r v+C3 ~r + P - e - ( R - r ) 2 ;  (15) 

o~ + v ~ : 7 0-7 ~ ~ + c ,  (~2) ~ + {c,~p - C:~,}(,/E) - (R - ~)~- 1~' (16) 

where U, V, and W are the components of the mean velocitjr vector in the longitudinal, radial, and azimuthal 
directions, and u, v, and w axe the corresponding fluctuating velocity components. The turbulent stresses 
in (13)-(16) axe found from the differential transport equations (2), which were closed according to (3) and 
(5)-(10). For individual components of the stress tensor, these equations are written as 

O(u 2) O(u 2) 1 O[  ( f )OIu2)1 
u--~-+v a~ :;a-; ~ ~+c3 (~2) ar j+P" 

+ {  - C1E((UZ)-2E) -C2(P , , -2p)+I I ' f } -2~e-  (R--r)z(u2U 2.), (17) 

o ,  + v 0 r  r : r 0 r  r ~ + o3 (,~) ~ j 

E O(vw) 2(u C3f(w2)) (w2)-(v2)  c,r~ + + + , .  
- ; t ~  ,.2 

2 2u (v2); (18) 2 E ) -  C2(P,,- 2 p)_ 2II 'f} - ~ ( R - r ) 2  -~- { -- 01 -~((t)2) -- 5 

O(w 2) O(w 2) _~_ 1 O [ ( f 0(,o2)I 
u----~-+v Or +2(ow) =70~ r ~+c, (02)) Or J 

(,,,~) (,,2) 
+-rC3 (vw)(vw)] + (vw) -- 2\u + C, (w2)/ r2 + Pw. 
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2E)-C2(Pww 2 H'f} 32-e 2v if- { -- Cl E ( ( W 2 )  - ~ - ~ P ) +  -- ( a  ~ r)2 (w 2 ) 

2 p ) ,  f =  1 E 3/2 );  (19) (I]'=C"E(V2)-C~C2(P~v-3 5 ( / fZr )e  

Or I 

r Or J- -~'-+P,,v 

"~- { -- Cl  -.~(tto) - C2Puv - -~ (C  1 ~(ut~) -I t- i 2 .  

u ~ + v 0r [(w~> - (~ ~ - ~ 0r ~ "+ c. <~ ---gT-~ J 

C_~r [~---~(f (vw)((w2)- <v2))) + f(vW)~r((W2)-(v2))] - 4 @ +  Cs f < w 2 ) ) ~ +  Pvw 

_ e , p 
+ { - c, -~(o~) - c2P~. ~ -~(ow) (n- r) ~(~ (21) 

v 0x + v 0r + = - -  r " +  c, (o 2) r r Or Or J 

2v (uw). (22) 

The terms of turbulence production in (17)-(22) have the form 

OW vw OU, I 
P"" = -(u~ - ( )-g7 P = ~(P"" + P~ + pn). 

for convenien~ of numerical realization, instead of Eqs. (18) and (19) for (o 2) and (w2), we used Eq. (15) 
for E = (I/2)((u 2) + (v 2) + (w2)) and the equation for a = (w 2) - (v 2) obtained from (18) and (19). The 
latter substitution is due to the presence of a singularity at the pipe axis in the equations for (v 2) and (w2), 
which is caused by a source of the form -I-2(v + Cs(E/e)(w2))(a/r 2) if a # 0. The values of (v 2) and (w 2) are 
determined from the values of E, (u2), and a found from the transport equations: (v 2) = E - ((u 2) + a)/2 
and (w 2) = a + (v2). The pressure gradient -(1/p)(OP/Ox) in (13) can be determined by integrating (13) 
in the small-convection approximation U(OU/Oz) + V(OU/Or) (the numerical experiments supported this 
assumption). The integration of (13) over the pipe cross section yields 

whence we find the friction velocity on the wall u, = [v(-OU/Or)r=R] 1/2 which enters the damping function 
fl in Eq. (lfi) for dissipation. 
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TABLE i 

Model Cl C2 C~ C~ C,1 C~2 C~3 C~ C, 

No. 1 1.5 0.6 0.3 0.3 1.35 1.8 2.0 0.18 0.18 
Nos. 2 and 3 1.5 0.6 0.3 0.3 1.35 1.8 2.5 0.18 0.18 

The values of the numerical coefficients for the model of the Reynolds-stress transport equations (model 
No. 1) are listed in Table 1. The same values were used in [9, 11-13]. 

M o d e l  w i th  A lgeb ra i c  Re la t ionsh ips  for R e y n o l d s  Stresses .  The differential transport equations 
(2) for turbulent stresses can be simplified to algebraic equations assuming the convection and diffusion terms 
to be small in comparison with turbulence production and dissipation, and also assuming the transfer of 
tensor components (uiuj) to be proportional to the transfer of turbulence energy [9]: 

1 ( ~ r ) 2 .  j . (23) 

The coefficient is k = 0 in the local-equilibrium approximation [13] and k - i in the nonequilibrium 
approximation [9, 12]. Having substituted the exact form of the turbulence production Pij and the model 
approximations (5)-(10) for the correlations Hij and eij, we find the sought second-order moments from (23). 
For an axisymmetric flow in a pipe, the relationships for the second-order moments are obtained by simplifying 
Eqs. (17)-(22) for individual components of the Reynolds stress tensor according to (23): 

(2/3)[(C1 - 1)e 4- C2P] + (1 - C2)P,** + H' f (24) 
(u2) "-" C l ( e / Z )  + 2 v / ( R  - r) 2 + k iP  - e - 2 g E / ( R  - r)2]/E; 

, 2 2v(w 2) 
(v2)  = [ (C1 - 1 )e  + C2P] + (1 - C2)P~,, + 2C2C2(P,,,, - -~ P ) f  + r-----5--- 

, ~ 2v 2v [ P - e  2v ] ; (25) 
(c1 + 2cI/)  + ( R -  r)2 + + k E (R--r)2 

) 
(w~) _- [(C~ - 1 )e  + C2PI + (1 - C2)P~,,, + II'.f + r"-'5--" 

+ (R - + + k (R 

(1 - C2 - 3C~C2f /2)P,,,, 
(uv) = (Cl 4- 3 C l f  l 2 ) ( e l E )  4- 2 v l ( R  - r) 2 4- v / r  2 = A,,,,P,,,,; (27) 

(1 - C2 - 3C~C2f /2)Pvw 
(vw) --- (Ci + 3 C ~ f / 2 ) ( e / E )  4- 2 v / ( R  - r) 2 4- 4 v / r  2 = A~P,,, , ,;  (28) 

(i- c2)P.. 
(uw) ---. C I ( e / E )  4- 2 v l ( R  - r) 2 4- v / r  2 "" AuwP,  w, (29) 

Note that a correction in the form of the terms added from the second component on the left-hand side of the 
governing equation (23) and proportional to v l r  2 is introduced into (25)-(29). This correction is necessary to 
describe the correct behavior of not only the second-order moments (r 2 ,,, (w 2) - (v 2) ,-, (vw) ---* 0 at r --* 0) 
near the axis, but also the mean circumferential velocity (W ~, r at r --* 0) at large swirling parameters. 
This correction can also be regarded as a "penalty" of the algebraic model (24)-(29), since the complete 
second-order closure model (12)-(22) automatically takes into account the asymptotic behavior of the sought 
quantities near the axis. 

With allowance for (29), Eqs. (27) and (28) become 

(v 2) + A , w ( v w ) ( W l r )  OV OV 
- ( u v )  = -A~ 2 4- muw(WIr)(OW/Or)  O-"~ = rig Or ; (30) 
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OW W 
- - ,  vtW = Avw(v2), atW = Avw(W2), (31) 

= .,w r 

in which the "effective coefficients of turbulent viscosity" vtu,  v tw,  and a t w  are complex functions of W, 
E, ~, and other parameters. With (30) and (31) taken into account, Eqs. (13) and (14) are reduced to the 
parabolic equations 

u + v o ,  - ,  ar - (32) 

--~'z -F V -'~-r -l" V --~" = r "~r ~ - u -~ - 7 [ ~r -l- ( v w ) . (33) 

Equations (12), (32), and (33) for the mean velocity field, (15) and (16) for the turbulence energy and its 
dissipation rate, and also relations (24)-(31) for turbulent stresses yield the model of turbulent transfer with 
algebraic relationships for the second-order moments. The coefficient in formulas (24)-(26) is k = 1 in the 
nonequilibrium approximation (model No. 2) and k = 0 in the local-equilibrium approximation (model No. 3). 
The empirical coefficients of model Nos. 2 and 3 are given in Table 1. 

Numerical Implementa t ion  of  Turbulence Models. The following boundary conditions are used for the 
differential transport equations in model Nos. 1-3: 
for r = 0 (at the pipe axis), we have 

OU __ OE _ Oe _ O(u 2) Oa _ (uv) = (vw) = (uw) = W = O 
Or Or Or Or Or 

and, for r = R (at the wall), we have 

U = E = e = ( u  2 ) = a = ( u v ) = ( v w ) = ( u w ) = 0 ,  W = W o > O .  

The governing system of parabolic type for U, W, E, e (and for (uiui)  in model No. 1) is solved by 
the control-volume method [18]. The transport equations for the sought quantities F are written in the Mises 
variables (the coordinate x is the stream function r in the general form: 

(34) 

where FF is the diffusion coefficient and 5F is the source term. 
The computational domain was split in the transverse direction into N - 1 intervals. The procedure 

of numerical solution of equations of the form (34) is a noniterative process of step-by-step integration. It 
was described in detail by Spalding [18]. The step Ax of integration with respect to the coordinate x and 
the number of points N -- 128 were chosen from the condition of retention of the necessary accuracy of 
calculations (variation of the sought quantities within 1% of their maximum values with a twofold decrease 
in Ax or a twofold increase in N). The grid is nonuniform in the r direction: 

(a) Ari  = v /u ,o  for 0 ~< y+ <~ 5 (10 equal intervals in the viscous sublayer) and u,0 is the friction 
velocity on the wall in the exit cross section of the nonrotating section of the pipe; 

(b) Ari+l = 3Ari  for 5 < y+ <~ 50 (an increase of the intervals in a geometrical progression from the 
pipe wall in the transient region); 

(c) Ari = const >:~ u/u ,o  for 50 < y+ < Re*, where y+ = ( R  - r ) u , o / v  = (1 - r/R)Re* (100 equal 
intervals in the external flow up to the wind-tunnel axis). 

The flow-rate conservation law in the variables (x, r was fulfilled automatically: 

R 
/ Ur dr = r - r = const, 
0 

since the condition 
riq-1 

/ Urdr  = const, i = 1 , . . . , N -  1, r  r  
ri 
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holds on each interval in integrating over the control volumes. The values of ri were calculated using the 
recurrent formula 

~b(r i+l  ) d~b 

f _0_. r i +  1 - -  r i 

~(ri) 
The condition r N = R,  i.e., 

N-1 ~(ri+l)d~ b R 2 

E f 
i=1 ~(ri) 

was satisfied by multiplying the velocity U at all points by the residual (r 2 - r2 ) /R  2 in each cross section 
:r -~- c o a s t .  

The calculation was performed in two stages: (1) obtaining a developed flow without swirling; (2) 
superposition of the pipe rotation with velocity W0 = t a r  onto the developed flow. 

At the first stage of computations,  the initial velocity profile was prescribed as a combination of the 
linear [U(r) = u.y  + for 0 < y+ <~ y+] and power [U(r) = Ctu.(y+) 1/r, where Ct = 8.74 and y~ = Crt 16, 
for y+ < y+ ~< Re*] functions. The turbulence energy and its components were chosen equal to the small 
background values: E(r)  = E0 = 10-3u20, (u 2) = (2/3)E0, and a = 0; the shear stress was (uv)L=0 = 0. 

Assuming the local equilibrium (P = ~) and the gradient relationship (uv) = -C~f~(E2/e)(OU/Or) (the 
value of C t, = 0.09 and the damping function f~ = 1 - exp (-0.01 y+) are borrowed from [14]), we found the 

turbulence energy dissipation: ~(r) = c /-C  f EolOU/Orl. 
At the second stage, the initial data were the transverse profiles of U, E,  e, (uv), (uS), and a = 

/w 2) - (v 2) obtained at the first stage, forming a developed turbulent  flow in a pipe. The  remaining functions 
to be found were W(r  = R) = W0 and W(r  < R) = <vw) = (uw) = O. 

The calculated characteristics were normalized by the dynamic velocity u.0 and the pipe radius R. 
The input parameter  Re* = Ru.o /v  = 875 was the same as in the experiment (R = 3 cm, U0 = 103 cm/sec, 
v = 0.149 cm2/sec, and u.0 = 43.5 cm/sec). A distance of 200R along the z coordinate along the pipe axis was 
covered at the first stage of calculations, and this distance was 50R at the second stage, as in the experiment. 
Flow stabilization with an increase in z can be characterized by the value of advection of the turbulence 
energy, which decreases at the end of the first stage to a negligible value: 

~ << 
The relative value of advection was significantly larger at the end of the second stage, and stabilization of the 
turbulent flow characteristics along z was not observed. 

R e s u l t s  o f  L a b o r a t o r y  a n d  N u m e r i c a l  E x p e r i m e n t s .  Ver i f i ca t ion  of  t h e  A c c u r a c y  of  t h e  
T u r b u l e n t  T r a n s p o r t  M o d e l s .  Results of laboratory and numerical experiments for a flow in a rotating 
pipe with different swirling parameters are presented in Figs. 1-5 (for the exit cross section of the rotated 
section of the pipe for x / R  = 50). 

In a nonswirling flow, the measured results of the longitudinal component of the mean velocity, Reynolds 
stress, turbulence energy, and its dissipation rate are in reasonable agreement with the  known data [19--22]. The 
experimental profile U(r)/Uo for SP = 0 is approximately described by a power (logarithmic) law (Fig. la). 
The difference of the U(r) profiles at the pipe axis calculated by the  three models does not exceed 2% for a 
nonswirling flow and approximately 5% for a swirling flow. Figure l a  shows the profile U(r) obtained using 
model No. I for the second-order moments,  which is in better agreement with the experimental data for a 
swirling flow than  the profiles found using model Nos. 2 and 3 with algebraic relationships for the second-order 
moments (not shown in Fig. la); for SP > 0, the data are shown in the exit cross section of the rotated section 
of the pipe ( z / R  = 50). 

The measurement results for dissipation ~(r) (Fig. 2b) for SP = 0 are readily reproduced by model 
Nos. 1-3 in the region 0 < r / R  < 0.5. There is not much difference between the calculated dissipation 
profiles for the three models and, therefore, only the profiles obtained using model No. 1 of the second-order 
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r/R a 

0.8 ~ ' ~  

0.4 

rlR~ b ~ ~ J "  
0.8 3 f ~  - 
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Fig. 2. Distributions of the turbulence energy E/u2.o (a) and its dissipation rate 
eR/u3.o (b): the solid, dashed, and dotted curves refer to the calculations using 
model Nos. 1, 2, and 3, respectively; see also the legend in Fig. 1. 

moments are shown in Fig. 2b. Model No. 1 is the best for the reproduction of the profile of turbulence energy 
E/u2,o, and model No. 3 is less suitable for this purpose (Fig. 2a). Model No. 1 more adequately describes 
the turbulent stress-tensor components (Fig. 3), in particular, the experimentally observed anisotropy of the 
normal stresses both near the wall and at the flow axis, where (v 2) = (w 2) and (u 2) ___ 2(v2). The locally 
equilibrium model No. 3 yields the worst agreement for the shear and normal stresses, in particular, at the 
pipe axis ((u 2) ~ (v 2) ~ (w2)). 

As the flow swirling increases, with constant air flow rate, an increase in the longitudinal component 
of the mean velocity near the flow axis (for 0 < SP ~< 0.6) is observed both in calculations and experiments 
(Fig. la). The deformation of the profile U(r) is caused by the curving of the streamlines in the radial direction 
under the action of the centrifugal force: they crowd together near the wall and are less compact near the axis. 
The profile aU/Or becomes more shallow near the wall, which points to a decrease in the turbulent  friction 
as the degree of swirling increases. Our experimental data were obtained for one velocity at the axis. The 
calculations were performed for a.constant flow rate. The behavior of the curves U(r)/Uo in Fig. la  shows 
that the character of the swirling effect is identical in calculations and experiments. 

As the rotation frequency of the pipe increases, the relative value of the circumferential component of 
the mean velocity in the axial region decreases (Fig. lb). Thus, the distribution of W(r)/Wo over the radius 
becomes increasingly nonuniform with increasing degree of swirling (this is shown in the exit cross section of 
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Fig. 5. Longitudinal "damping coefficient" K= versus the swirling parameter SP = Wo/Uo 
for r /R  = 0 and x / R  = 50: see the legend for the curves in Figs. 1 and 2; the points <> 
refer to experimental data. 

the rotated section of the pipe). Model No. 1 of the second-order moments adequately describes W/Wo for 
SP = 0.15 and 0.6. The  values of the circumferential velocity W(r)/Wo calculated using model Nos. 2 and 3 
are significantly larger than the measured values for all the SP > 0 (they are not shown in Fig. lb). 

The three models of turbulence reproduce the experimentally observed effect of the decrease in the 
fluctuating characteristics E,  e, and (uiuj) as the swirling parameter  increases (Figs. 2-6). The anisotropy of 
the turbulence-energy components  observed in a nonswirling flow (Fig. 3b) is also retained in the presence of 
flow swirling both in experiment and in calculations by model Nos. 1-3. The influence of the swirling on the 
components of the normal stresses (u~) was evaluated using the "damping coefficient" (no summation over 
the subscript was performed) 

Ka = (u2)(SP > O)/(u2)(SP = O) 

for the a- th  root-mean-square velocity fluctuations. For weak swirling (SP ~ 0.3), the most profound 
suppression of the fluctuation intensity was observed at the flow axis. As the swirling increases (SP > 0.6), 
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the maximum of suppression shifts to the region 0.3 < r/R < 0.6. Model Nos. 1-3 reproduce these effects 
(Fig. 4). On the whole, the differential model No. 1 of the second-order moments better describes the behavior 
of the "damping coefficients" for SP = 0.15 and 0.6. 

The curves of the "damping coefficient" K,~ versus the swirling parameter SP, which were calculated 
using model Nos. 1-3, are in reasonable agreement with experimental data (Fig. 5). The behavior of the 
calculated curves is characterized, as in experiment, by the terminated suppression of the intensity of turbulent 
fluctuations for SP > 0.85 (the effect of saturation with respect to the swirling parameter). 

The marching procedure of step-by-step integration over control volumes, which was used for numerical 
simulation, makes it possible to trace the changes in the flow characteristics with increasing longitudinal 
coordinate z. As x increases, the "damping coefficient" demonstrates the same behavior as in the experiment 
(Fig. 6). For r /R = 0.6, the swirling effect is manifested more significantly, and it is observed at a distance of 
z /R  ~ 4-5 from the beginning of the rotated section and at a distance of z /R  ~ 10-14 at the pipe axis. Thus, 
the flow does not experience the swirling effect in a converging cone at the beginning of the rotated section 
of the pipe. The results of model No. 2 and No. 1 are dose to the experimental results obtained, respectively, 
at the pipe axis (Fig. 6a) and outside the axial region (Fig. 6b). 

Conclus ions .  The results of an experimental study and mathematical simulation of a developed 
turbulent flow in a straight round pipe rotated about its longitudinal axis show that flow swirling leads to 
significant changes in its characteristics: for insignificant and moderate degrees of swirling, the turbulent 
exchange processes are suppressed, i.e., the turbulent shear stresses, three components of the turbulence 
energy, and its dissipation rate decrease. The flow parameters change throughout the length of the rotated 
section (here 0 < x /R  < 50), and a pattern that is independent of a further increase in the distance from the 
beginning of the section along the x axis is not obtained. On the whole, the model of the transport equations 
for the Reynolds stress (model No. 1) gives better agreement with experimental data than the models with 
algebraic relationships for the second-order moments (model Nos. 2 and 3). Model No. 2 with nonequilibrium 
relationships for normal stresses allows, in turn, a more exact calculation of the behavior of the turbulence 
energy and its components in the axial flow region with a moderate velocity of pipe rotation than model 
No. 3. 
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